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Abstract
We show that in the presence of free charge carriers the definition of the
frequency-dependent dielectric permittivity requires additional regularization.
As an example, the dielectric permittivity of the Drude model is considered
and its time-dependent counterpart is derived and analyzed. The respective
electric displacement cannot be represented in terms of the standard Fourier
integral. The regularization procedure allowing the circumvention of these
difficulties is suggested. For the purpose of comparison it is shown that the
frequency-dependent dielectric permittivity of insulators satisfies all rigorous
mathematical criteria. This permits us to conclude that in the presence of free
charge carriers the concept of dielectric permittivity is not as well defined as
for insulators and we make a link to widely discussed puzzles in the theory
of thermal Casimir force which might be caused by the use of this kind of
permittivities.

PACS numbers: 77.22.Ch, 02.30.Nw

1. Introduction

The concept of dielectric permittivity in media with temporal dispersion is commonly used
in electrodynamics and condensed matter physics (see e.g. [1, 2]). For not too strong fields
the dielectric permittivity ε(τ ) depending on the time-like variable τ is introduced from the
linear integral relation between the electric field E(r, t) and the electric displacement D(r, t).
Then the frequency-dependent permittivity ε(ω) is defined using the Fourier transformations
of the fields E(r, t) and D(r, t). Below we argue that this procedure, which is wholly
satisfactory for dielectric materials, faces additional regularization problems in an infinite
medium containing free charge carriers. This leads us to the conclusion that some applications

1751-8113/10/015402+08$30.00 © 2010 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/43/1/015402
http://stacks.iop.org/JPhysA/43/015402


J. Phys. A: Math. Theor. 43 (2010) 015402 M Bordag et al

of the frequency-dependent dielectric permittivities allowing for free charge carriers might
not be rigorously justified. As one such example we discuss the dielectric permittivity of the
Drude model which leads to widely discussed difficulties when substituted into the Lifshitz
formula for the van der Waals and Casimir forces at nonzero temperature [3].

2. Dielectric permittivity in the presence of temporal dispersion

For simplicity we consider an isotropic nonmagnetic medium of infinite extent. If its properties
do not depend on time, the linear dependence between D(t) and E(t) satisfying causality
(here and below we omit the argument r) is given by

D(t) =
∫ t

−∞
dt ′ε(t − t ′)E(t ′). (1)

The kernel ε(t − t ′) of the integral operator on the right-hand side of (1) is called the dielectric
permittivity for media with temporal dispersion. We represent it in the form

ε(t − t ′) = 2δ(t − t ′) + f (t − t ′), (2)

where f (t − t ′) is a continuous real-valued function and the delta function δ(t − t ′) is defined
on the interval −∞ < t ′ � t in the following manner [4]:

∫ t

−∞
g(t ′)δ(T − t ′) dt ′ =

⎧⎪⎨
⎪⎩

0, T > t,

1
2g(T − 0), T = t,

1
2 [g(T − 0) + g(T + 0)], −∞ < T < t.

(3)

Here g(t) is an arbitrary function which has bounded variation in the vicinity of the point
t ′ = T . Note that from the physical point of view the function f (t − t ′) is defined only for
t ′ � t ; for t ′ > t it can be ascribed any values (including to vanish in that region).

Substituting (2) into (1) with account of (3) and introducing the new variable τ = t − t ′ �
0, we rearrange (1) to [1]

D(t) = E(t) +
∫ t

−∞
dt ′f (t − t ′)E(t ′) = E(t) +

∫ ∞

0
dτf (τ)E(t − τ). (4)

Representing the real functions D(t) and E(t) as Fourier integrals,

D(t) =
∫ ∞

−∞
D(ω) e−iωtdω, E(t) =

∫ ∞

−∞
E(ω) e−iωt dω, (5)

one can rewrite (4) in terms of Fourier transforms of the fields [1]

D(ω) = ε(ω)E(ω), ε(ω) ≡ 1 +
∫ ∞

0
dτf (τ) eiωτ =

∫ ∞

0
dτε(τ ) eiωτ , (6)

here D(ω),E(ω) and ε(ω) are complex-valued functions. From (6) it follows that ε(ω) is an
analytic function in the upper half-plane of complex ω including the real axis with the possible
exception of the point ω = 0. As a result, the real and imaginary parts of ε(ω) are connected
by means of the Kramers–Kronig relations [1]. Note that in contrast, for instance, to [5] we
always consider fields defined in (r, t)-space as real and only their Fourier transforms might
be complex.

The equivalence between (4) and (6) requires the existence of integrals (5) (and respective
inverse Fourier transformations) and the possibility of changing the order of integrations with
respect to dt ′ and dω. In mathematics there are many different conditions on how to assign a
rigorous meaning to (5) and respective inverse formulas. The most widely used demand is that
the function D(t) should have a bounded variation and be integrable together with its modulus,
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i.e. should belong to L1(−∞,∞). In this case the function D(ω) is also bounded, uniformly
continuous on the axis (−∞,∞), and D(ω) → 0 when |ω| → ∞ [6]. The function E(t)

should possess the same properties. The change of order of integrations is possible if both
integrals under consideration are uniformly convergent.

3. Media with free charge carriers

It can be easily seen that the above conditions permitting to introduce the frequency-dependent
dielectric permittivity ε(ω) in accordance with (6) are not directly applicable for media with
free charge carriers. As an example we consider the widely used dielectric permittivity of the
Drude model, describing such media [7],

εD(ω) = 1 − ω2
p

ω(ω + iγ )
, (7)

where ωp is the plasma frequency and γ > 0 is the relaxation parameter. It is obvious that
ω = 0 may lead to mathematical problems in Fourier transformation. To make a link between
εD(ω) and real-valued physical fields E(t) and D(t), it would be of interest to determine the
respective function fD(τ). The substitution of (7) into (6) leads to the following equations:

− ω2
p

ω2 + γ 2
=

∫ ∞

0
fD(τ) cos(ωτ) dτ,

ω2
pγ

ω(ω2 + γ 2)
=

∫ ∞

0
fD(τ) sin(ωτ) dτ.

(8)

From the first equation, by means of the inverse cosine Fourier transformation performed with
the help of the integral 3.723(2) in [8], one finds

f cos
D (τ) = −ω2

p

γ
e−γ τ . (9)

It is easily seen that the substitution of (9) into the first equation of (8) with account of 3.893(2)
in [8] leads to a correct identity; however, substitution into the second equation of (8) fails.
On the other hand, using the inverse sine Fourier transformation and the integral 3.725(1) in
[8], the second equation of (8) leads to a different result:

f sin
D (τ) = ω2

p

γ
(1 − e−γ τ ). (10)

Now, the substitution of (10) into the right-hand sides of equations (8) reproduces their left-
hand sides up to additional undefined terms and thus also violates the equalities.

The pathological properties under consideration are explained by the fact that εD(ω)

results in D(ω) which is unbounded in any vicinity of ω = 0. This means that D(t) cannot
be represented as a Fourier integral (5) and both the definition of ε(ω) in (6) and equivalent
equations (8) become unjustified.

The question arises of whether there is a possibility to consistently define the function
fD(τ) related to the frequency-dependent permittivity (7). Keeping in mind that in the case
of the Drude model the second equality in (6) cannot be considered as a classical Fourier
transformation, we make an attempt to assign a definite meaning to the function fD(τ) by
considering the generalized inverse transformation of the quantity εD(ω) − 1 defined as

f
(0)
D (τ ) ≡ −ω2

p

2π

∫ ∞

−∞
dω

1

(ω + i0)(ω + iγ )
e−iωτ

= −ω2
p

2π

∫ ∞

−∞
dω

ω − iγ

(ω + i0)(ω2 + γ 2)
e−iωτ ≡ I1 + I2. (11)

3
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Here, the addition of an infinitesimally small quantity +i0 establishes the rule on how to bypass
the pole of ImεD(ω) at ω = 0 and the following notations are used:

I1 = −ω2
p

2π

∫ ∞

−∞
dω

1

ω2 + γ 2
e−iωτ ,

I2 = iω2
pγ

2π

∫ ∞

−∞
dω

1

(ω + i0)(ω2 + γ 2)
e−iωτ .

(12)

In I1 the integrated function is regular at ω = 0. This integral can be found in 3.354(5)
[8],

I1 = −ω2
p

2γ

{
e−γ τ , τ > 0,

eγ τ , τ < 0.
(13)

The second integral in (12) can be calculated using the contours consisting of the real axis in
the complex ω-plane and semicircles of infinitely large radii centered at the origin in the lower
half-plane (for τ > 0) and in the upper half-plane (for τ < 0). The result is

I2 = ω2
p

2γ

{
2 − e−γ τ , τ > 0,

eγ τ , τ < 0,
(14)

where for τ > 0 the contributions from the two poles at ω1 = −i0 and ω2 = −iγ were
taken into account, whereas for τ < 0 only one pole at ω3 = iγ determines the value of I2.
Substituting (13) and (14) into the right-hand side of (11) we arrive at

f
(0)
D (τ ) =

{
ω2

p

γ
(1 − e−γ τ ), τ > 0,

0, τ < 0.
(15)

It is seen that the suggested rule leads to the same result (10), as was obtained by the inverse
sine Fourier transformation from the imaginary part of εD(ω) in (8).

A similar situation occurs for other dielectric permittivities taking into account free charge
carriers, e.g. for the dielectric permittivities of the plasma model and of the normal skin effect,

εp(ω) = 1 − ω2
p

ω2
, εn(ω) = 1 + i

4πσ0

ω
, (16)

where σ0 is the dc conductivity. In both cases the mathematical conditions permitting to
perform the Fourier transformation in the classical understanding are violated. However, by
using the same considerations as presented above in the case of the Drude model, one may
assign a meaning analogous to (10) to the second formula in (6) and obtain the following
dielectric permittivities as functions of τ :

f (0)
p (τ ) =

{
ω2

pτ, τ > 0,

0, τ < 0.
f (0)

n (τ ) =
{

4πσ0, τ > 0,

0, τ < 0.
(17)

It should be remarked that f (0)
p (τ ) is obtainable also from (15) in the limiting case γ → 0.

Now let us check for consistency the respective results for D(t). For example, we choose
the electric field in the form

E(t) = E0 e−βt2 =
∫ ∞

−∞
E(ω) e−iωt dω, (18)

where β > 0 and E0 ≡ E0(r) describes the spatial dependence of the field. As already stated
(18), the function E(t) satisfies all required conditions and can be presented as a Fourier
integral. Its Fourier transform is calculated using the formula 3.896(4) in [8],

E(ω) = 1

2π

∫ ∞

−∞
E(t) eiωt dt = 1

2
√

πβ
E0 e− ω2

4β . (19)
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Substituting (15) and (18) into (4) and using the formula 3.322(2) in [8] we arrive at

D(t) = E(t) + E0
ω2

p

2γ

√
π

β

[
1 + erf(

√
βt) − e

γ 2

4β
−γ terfc

(
γ

2
√

β
−

√
βt

)]
, (20)

where erf(x) is the error function and erfc(x) = 1 − erf(x). Keeping in mind that [8]

erf(−x) = −erf(x), erf(x) = 1 − 1√
π

e−x2

x
+ · · · , (21)

we obtain for t → ±∞

D(∞) = E0
ω2

p

γ

√
π

β
, D(−∞) = 0. (22)

This is what one expects on physical grounds because for an infinite medium containing free
charge carriers the action of switching on and then switching off the electric field should result
in a nonzero residual displacement (for a finite medium, the presence of external electric field
leads to the accumulation of positive and negative charges on the opposite boundary surfaces
and to the vanishing of the total electric field inside such a medium [9]; after the external
electric field switches off, the accumulated charges are distributed uniformly over the volume
of the medium leading to zero electric displacement at t → +∞). However, the first equality
in (22) means that D(t) is not an integrable function over the interval (−∞,∞). This makes
impossible the use of the standard Fourier transformation (5) and resulting equality (6), and
makes the whole formalism not self-consistent.

This can be seen even more clearly if one defines D(ω) in accordance with the first
equality in (6), where ε(ω) = εD(ω) and E(ω) is given in (19), and then calculates the electric
displacement using the first equality in (5). The obtained quantity which we notate D̃(t) is
calculated using the formulas 3.954(2) in [8] and 2.5.36(6, 11) in [10]. The result is

D̃(t) = D(t) − E0
ω2

p

2γ

√
π

β
, (23)

where D(t) is defined in (20). It has nonzero values at both t → ∞ and t → −∞:

D̃(∞) = E0
ω2

p

2γ

√
π

β
, D̃(−∞) = −E0

ω2
p

2γ

√
π

β
. (24)

Derivation of a different electric displacement than in (20), which does not vanish at t → −∞,
i.e. before the switching on of the electric field, can be understood as an artifact resulting from
the use of the Fourier integral of a nonintegrable function D(ω) (the definition of the Fourier
integral as a generalized function used in mathematics in this case seems to be not appropriate
in our physical situation because it is natural to understand the electric displacement as a usual
function). This suggests that in the presence of free charge carriers, the standard definition
of the frequency-dependent dielectric permittivity based on the formal representations of
E(t) and D(t) in terms of Fourier integrals is not satisfactory and requires some additional
regularization procedure.

As an example of such a procedure, we consider the modified dielectric permittivity of
the Drude model

ε
(θ)
D (ω) = 1 − ω2

p

(ω + iθ)(ω + iγ )
, (25)

5
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where, in contrast with (11), the quantity θ >0 is not infinitesimally small. In accordance with
(25) ε

(θ)
D is regular at ω = 0. The substitution of (25) into (6) leads to

−ω2
p

ω2 − θγ

(ω2 + θ2)(ω2 + γ 2)
=

∫ ∞

0
f

(θ)
D (τ ) cos(ωτ) dτ,

ω2
p(θ + γ )

ω

(ω2 + θ2)(ω2 + γ 2)
=

∫ ∞

0
f

(θ)
D (τ ) sin(ωτ) dτ.

(26)

It can be easily seen that both the inverse cosine and sine Fourier transformations performed
in (26) lead to the common result

f
(θ)
D (τ ) = ω2

p

γ − θ
(e−θτ − e−γ τ ). (27)

Substituting this into (4) and performing calculations with the electric field (18), we arrive at
the modified electric displacement

D(θ)(t) = E(t) + E0
ω2

p

2(γ − θ)

√
π

β

[
e

θ2

4β
−θterfc

(
θ

2
√

β
−

√
βt

)

− e
γ 2

4β
−γ terfc

(
γ

2
√

β
−

√
βt

)]
. (28)

In the limiting case θ → 0 (28) coincides with (20).
Precisely the same result, as in (28), is obtained if one considers D(θ)(ω) = ε

(θ)
D (ω)E(ω)

and then finds D(θ)(t) from the first equality in (5). Thus, when we assume θ > 0, both
methods of the calculation of the electric displacement are in agreement. The reason is that for
θ > 0 the functions D(t) and D(ω) belong to L1(−∞,∞) and all Fourier transformations are
well defined. However, to obtain the correct physical results for an infinite medium, one must
put θ = 0 in (28) and return to (20). The point is that (28) with θ > 0 leads to D(θ)(t) → 0
when t → ±∞ (as it must be for functions belonging to L1(−∞,∞)). At the same time, in
the presence of free charge carriers, the electric displacement in an infinite medium remains
nonzero in accordance with (22) after the electric field is switched off. Thus, the limiting
transitions t → ±∞ and θ → 0 are not interchangeable.

4. Insulating media

The situation is quite different for dielectric materials at zero temperature which do not
contain free charge carriers (i.e. for true insulators). In this case the dielectric permittivity can
be represented in the form [11]

εI (ω) = 1 +
K∑

j=1

gj

ω2
j − ω2 − iγjω

, (29)

where ωj �= 0 are the oscillator frequencies, γj are the relaxation parameters and gj are the
oscillator strengths of K oscillators. In this case the second equality of (6) results in

K∑
j=1

gj

(
ω2

j − ω2
)

(
ω2

j − ω2
)2

+ γ 2
j ω2

=
∫ ∞

0
fI (τ ) cos(ωτ) dτ,

K∑
j=1

gjγjω(
ω2

j − ω2
)2

+ γ 2
j ω2

=
∫ ∞

0
fI (τ ) sin(ωτ) dτ.

(30)

6
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Performing the inverse cosine Fourier transformation in the first equation of (30) with the help
of the integrals 3.733(1, 3) in [8] we obtain

fI (τ ) =
K∑

j=1

gj e− 1
2 γj τ√

ω2
j − 1

4γ 2
j

sin

(√
ω2

j − 1

4
γ 2

j τ

)
. (31)

Precisely the same result is obtained by means of the inverse sine Fourier transformation from
the second equation in (30) when one uses the integral 3.733(2) in [8]. In this case all involved
Fourier integrals exist in the classical sense with no use of regularization and εI (ω) is well
defined.

Substituting the electric field (18) into (4) and using the integral 3.897(1) in [8], we obtain
the electric displacement in an insulating media,

D(t) = E(t)

⎧⎨
⎩1 +

√
π

β

K∑
j=1

gj√
4ω2

j − γ 2
j

Im
[
eB2

erfc(B)
]⎫⎬⎭ , (32)

where

B ≡ B(t) =
γj − 4βt − i

√
4ω2

j − γ 2
j

4
√

β
. (33)

The same result is obtained by means of the inverse Fourier transformation from D(ω) found
using the first equality in (6), as it should be. From (32) and (21) it can be easily seen that
D(t) → 0 when t → ±∞, as it should be for insulating materials, and that both D(t) and
D(ω) belong to L1(−∞,∞).

5. Conclusions and discussion

To conclude, we have shown that the definition of the frequency-dependent dielectric
permittivity for materials containing free charge carriers by means of Fourier transformation of
the fields is not as straightforward as in the case of insulators. The essence of the problem is in
the use of the idealization of an infinite medium. For insulators this idealization is applicable
if the sizes of the bodies are much greater than some characteristic parameter (e.g. the width of
a gap between the bodies). However, for media with movable free charge carriers this kind of
conditions fails. The physical situation for an infinite medium turns out to be totally different
from the case of finite bodies of any conceivable size. In fact for conductors ε(ω) is a quantity
obtained through formal application of Fourier transformation in the region where it needs
additional regularization. In spite of a great number of successful applications (see e.g. [1, 2,
5]) there are delicate cases where such a procedure leads to problems. As an example one could
mention the use of εD(ω) − 1 as a response function in the fluctuation-dissipation theorem
and related puzzles in the theory of thermal Casimir force [3, 12, 13]. During the last 10 years
the thermal Casimir force has been the subject of considerable discussion. It was suggested
[14, 15] to describe it using the Lifshitz theory combined with the Drude model (7). In the
limit of large separations between the test bodies the predictions of the Drude model approach
were found to be in agreement with classical statistical physics [16, 17]. On the other hand, at
short separations the predictions of this approach were excluded experimentally, whereas the
predictions based on the use of the plasma model in (16) were found to be consistent with the
data [18]. The question of how to correctly calculate the thermal Casimir force still remains to
be answered. Keeping in mind that the Lifshitz theory is based on the fluctuation-dissipation
theorem, we would like to emphasize that the application of this theorem with poorly defined

7
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response functions cannot be considered as either exact or rigorous and might cause currently
discussed problems.
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